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ABSTRACT

Fast Inference for Interactive Models of Text

Jeffrey A. Lund
Department of Computer Science, BYU

Master of Science

Probabilistic models of text are a useful tool for enabling the analysis of large collections
of digital text. For example, Latent Dirichlet Allocation can quickly produce topical summaries
of large collections of text documents. Many important uses cases of such models include
human interaction during the inference process for these models of text. For example, the
Interactive Topic Model extends Latent Dirichlet Allocation to incorporate human expertise
during inference in order to produce topics which are better suited to individual user needs.
However, interactive use cases of probabilistic models of text introduce new constraints on
inference - the inference procedure must not only be accurate, but also fast enough to facilitate
human interaction. If the inference is too slow, then the human interaction will be harmed,
and the interactive aspect of the probabilistic model will be less useful. Unfortunately, the
most popular inference algorithms in use today either require strong approximations which
can degrade the quality of some models, or require time-consuming sampling. We explore
the use of Iterated Conditional Modes, an algorithm which is able to obtain locally optimal
maximum a posteriori estimates, as an alternative to popular inference algorithms such as
Gibbs sampling or mean field variational inference. Iterated Conditional Modes algorithm
is not only fast enough to facilitate human interaction, but can produce better maximum a
posteriori estimates than sampling.

We demonstrate the superior performance of Iterated Conditional Modes on a wide
variety of models. First we use a DP Mixture of Multinomials model applied to the problem
of web search result cluster, and show that not only can we outperform previous methods in
clustering quality, but we can achieve interactive runtimes when performing inference with
Iterated Conditional Modes. We then apply Iterated Conditional Modes to the Interactive
Topic Model. Not only is Iterated Conditional Modes much faster than the previous published
Gibbs sampler, but we are better able to incorporate human feedback during inference, as
measured by accuracy on a classification task using the resultant topic model. Finally, we
utilize Iterated Conditional Modes with MomResp, a model used to aggregate multiple noisy
crowdsourced data. Compared with Gibbs sampling, Iterated Conditional Modes is better
able to recover ground truth labels from simulated noisy annotations, and runs orders of
magnitude faster.

Keywords: Iterated Conditional Modes, Posterior Inference, Interactive Topic Modeling, Fast
Inference
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Chapter 1

Introduction

The rate at which new digital text appears is rapidly increasing. The internet has

enabled the layperson to easily distribute text in the form of email, blog posts, social media

posts, and websites. Traditional media such as books and newspapers are also being published

in digital form. Given this incredible volume of digital text, it has become impossible for

humans to analyze it all without the aid of computers.

Many popular and useful approaches for analysis of large bodies of text documents use

probabilistic models of text. For example, topic models such as Latent Dirichlet Allocation

(hereafter LDA) [9] can automatically learn topics from a set of documents, giving users

a glimpse into the common themes of the data, without the need to read each individual

document. Model-based clustering techniques such as Mixture of Multinomials [40] are another

kind of probablistic model which can automatically organize a collection of documents into

groups based on similarity.

In this work, we will examine text analysis use cases which include user interaction.

For example, the Interactive Topic Model (ITM) is a topic model which allows the user to

give feedback by injecting word groupings into the model to influence model inference [23].

By including a human in the loop during inference, the topic model can be specialized to

suit the particular needs of a specific task. The risk of including human interaction is that

if the inference algorithm is too slow, then the delay between receiving user feedback and

presenting the results from the updated model can harm the user experience and weaken the
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benefits of interactive modeling. Without sacrificing the accuracy of our analyses, the speed

of inference will be our primary concern throughout this work.

Another example of an interactive use case is a clustering model applied to the problem

of web search result clustering (WSRC). In this task, search engine results are clustered by

topic before being presenting to the user [14]. Grouping the results helps the user quickly

understand the search results, even when the search query is ambiguous and yields results from

multiple topics. While model-based clustering is a way to produce high quality clusterings

of documents [42], in order for the model to be useful in the context of web search result

clustering inference must be sufficiently fast (in this case sub-second) in order to be useful

for human interaction.

The purpose of this thesis is to explore the use of an inference algorithm known as

Iterated Conditional Modes for training probablistic models of text in an interactive context.

The remainder of this chapter introduces the problem of inference in general, including a brief

description of some popular inference algorithms, including Iterated Conditional Modes. We

will also briefly describe some interactive applications of probablistic models of text which

are used to validate our thesis statement. Chapter 2 describes our experiments with Iterated

Conditional Modes in detail. Note that chapter 2 is self-contained, as this chapter has been

submitted for separate publication elsewhere. Chapter 3 expands upon chapter 2 to show

the tradeoffs involved in using a hybrid approach with both Iterated Conditional Modes and

more traditional sampling techniques. Finally, we conclude with some parting observations

and direction for future work.

1.1 Probabilistic Inference

Many probabilistic models of text, including the ones we have already mentioned, are

generative, meaning they specify a full joint probability distribution over the data and

any latent variables. Consequently, they are structured so as to explain how the observed

data could be generated. Typically such generative models involve latent topic or cluster

2
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variables and the words of the documents belonging to those topics. Models also include prior

distributions, which allow the modeler to specify distributions over the latent variables. In

practice, we infer the parameters of the model from observed data. The difficulty in learning

arises from the fact that the topics or clusters are not known a priori and must be learned in

tandem with the topic or cluster assignments themselves.

We typically conduct inference (or train) probabilistic models of text by finding the

mode of the posterior probability distribution over the model parameters given the observed

data. In other words, we take our a priori knowledge in the form of the prior distributions

and attempt to find a setting of model parameters and latent topic variables which best

explain the observed data. Such a mode is known as a maximum a posteriori estimate. In

general, computing an exact maximum a posteriori estimate is an NP-hard problem, so we

resort to various approximations in order to optimize the posterior distribution [17, 36].

There are a number of algorithms such as variational inference and Gibbs sampling

which can be used to compute maximum a posteriori estimates for a particular model. In

section 1.2, we will discuss the most popular inference algorithms for probabilistic models of

text in greater detail. Each of these existing inference algorithms has some drawbacks. For

example, while variational inference is often very fast, it makes simplifying assumptions about

the posterior distribution which can seriously degrade the quality of solutions for certain

models such as Mixture of Multinomials [39]. However, for other models such as LDA we can

achieve reasonable estimates very quickly [4].

Gibbs sampling provably generates samples from the posterior distribution we are

interested in. Unlike variational inference, Gibbs sampling is theoretically able to explore

the entire support of the posterior manifold without approximation in the limit. However,

any reasonable restriction in runtime means that we will only be able to explore a localized

area of the support. Unlike most Bayesian analysis, we are not interested in characterizing

the entire posterior distribution, but we instead focus on finding the mode of the posterior.

Consequently, for most uses of probabilistic models of text, we will run a sampler for a period

3
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of time in the hope of finding an area of high probability, and then use the final sample as an

approximation for the true mode. While for some models such as Mixture of Multinomials

this technique gives very good results [34, 40, 42], the lack of convergence criteria can make

the technique prohibitively slow for applications which require user interaction.

In this work, we will experiment with a less well known technique, namely Iterated

Conditional Modes (icm) [6], which is able to converge to local maxima in the posterior

distribution, but requires no approximation of the posterior through sampling or through

any simplifying assumptions. While we do not solve the NP-hard problem of finding the

global mode of the posterior, we aim to demonstrate that icm is a viable alternative whenever

variational inference performs poorly and the lack of convergence in a Gibbs sampler is too

slow.

1.2 Related Work

There are many techniques for performing inference on probabilistic models of text. In this

section we will briefly introduce some of the most commonly used methods. A number of

exact methods exist such as belief propagation [31] and the junction tree algorithm [24].

However, as previously mentioned, the complexity of exact inference in many models is

NP-hard [36], which means that these exact algorithms do not scale well with models of large

text collections. Instead, we will discuss a number of approximate algorithms for inference.

The algorithms we will discuss are Expectation Maximization, variational inference, and Gibbs

sampling. As previously mentioned, we can think of this problem as an optimization problem

in which we seek model parameters which maximize the posterior distribution probability of

the parameters given the observed text data (i.e. a maximum a posteriori estimate). Some

of those parameters consist of latent topic variables which are used for further analysis of

the text. We will discuss the strengths of each algorithm as well as the shortcomings of each

algorithm which we wish to address with Iterated Conditional Modes.

4
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1.2.1 Expectation Maximization

Expectation maximization (EM) is a popular iterative algorithm for maximizing likelihood

in probabilistic models with missing or latent variables [18]. EM works in two phases. The

first (expectation) step computes the expected value of the likelihood function given the

value of the (hidden) parameters. The second (maximization) step uses those expectations to

maximize the values of the unobserved parameters. EM alternates between these two phases

until convergence is achieved.

As a hill-climbing algorithm EM is guaranteed to increase the value of the likelihood

and find a local maximum. However, it is not guaranteed to find a global maximum.

Furthermore, by optimizing the likelihood instead of the posterior, it only utilizes modeler

provided parameters for prior distributions for smoothing. Without this extra information in

the prior, for some models such as Mixture of Multinomials, it does not perform as well as

other techniques which do utilize priors [34, 39, 40].

Other variants of EM also exist. Deterministic annealing EM can help overcome

the problem of local maxima by performing EM on an annealed version of the likelihood

distribution [37]. The annealed likelihood takes a temperature parameter which controls

the amount of smoothing of the likelihood manifold. We start at a high temperature, and

gradually lower the temperature according to a preset schedule. Another variant of EM

is Expectation Conditional Maximization [26]. This variant interactively performs EM on

conditional distributions in order to maximize the joint likelihood. For our purposes, we will

focus on the original formulation of EM, as it is the most popular version for probabilistic

models of text.

1.2.2 Variational Expectation Maximization

Given a posterior of the form p(θ|w), variational inference seeks to minimize the KL divergence

between the true distribution p and an approximate but tractable distribution q. One popular

way of choosing approximating distribution q is with the mean field assumption. Under this
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assumption, we fully factorize p as a product of marginals so that q has the following form:

q(θ) =
∏

i qi(θi).

Using the mean field assumption, we can perform updates which function much the

same as Expectation Maximization. Due to the similarity of this technique to EM, when

infering latent variables it is sometimes referred to as Variational Expectation Maximization

or VEM. Similarly, when this technique is used to infer parameters instead of latent variables,

it is sometimes refered to as variational Bayes or VB [28]. We note that the derivation for

these updates can be difficult to produce, and many models do not have published variational

inference update equations. We apply these updates iteratively until convergence and are

thereby able to approximately maximize the value of the posterior distribution p(θ|w).

This type of inference algorithm is very popular for models like Latent Dirichlet

Allocation and is currently considered to be the state of the art when used in conjunction

with hyper-parameter optimization [4]. Like EM, variational inference tends to converge very

quickly. Unlike EM, it is able to take advantage of the information contained in the priors of

the model. However, variational inference makes use of the mean field approximation and

thereby introduces inappropriately strong assumptions of independence. Consequently, it can

only maximize an approximation of the posterior and can yield very poor model quality for

certain models [39].

Other variants of the general technique of variational inference also exist which do not

rely on approximating the posterior by a product of marginal distributions. For example,

Expectation Propagation (EP) is a form of belief propagation that approximates belief states

in a Bayesian network and performs Loopy Belief Propagation with those approximated

messages [27]. This type of inference can be framed as a variational problem in which we are

trying to minimize KL-divergence between the true posterior and an approximate distribution,

even though that approximation is no longer a globally valid joint distribution [38]. Initial

results with the Latent Dirichlet Allocation model indicate that EP does not perform as well

as other methods such as Gibbs sampling [22]. Other forms of variational inference include

6
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formulations which use linear programming relaxation [38] or graphcuts [10] to minimize

KL-divergence. However both of these algorithms scale poorly due to their reliance on

linear optimization and max-flow min-cut algorithms respectively. For the purposes of our

discussion, we will limit ourselves to mean field inference as this is easily the most popular

form of variational inference for probabilistic models of text.

1.2.3 Gibbs Sampling

Gibbs sampling is a Markov Chain Monte Carlo algorithm. The essential idea of Gibbs

sampling is that while sampling from a posterior distribution with the form p(θ|w) may

be intractable, sampling the value of a single variable θi while holding all other variables

θ¬i fixed is often easier. Note that the complete (or full) conditional p(θi|θ¬i, w) used for

sampling will only exist in closed form if the prior and the posterior are conjugate distributions.

However, modelers will often carefully choose distributions which satisfy this requirement.

For example, many probabilistic models of text satisfy this requirement due to their reliance

on the Dirichlet-multinomial conjugate pair.

The basic procedure for a Gibbs sampler is to iterate through each random variable

of interest θi and update that value by sampling from the complete conditional p(θi|θ¬i, w).

During each iteration the procedure re-samples the value of every variable in the model

and records the state of the variables as a sample from the entire posterior distribution.

It has been shown that this procedure generates samples from the posterior in the correct

proportions [21].

It is often the case in generative models of text, that there are parameters which are

not as important as other variables in the model for downstream analysis. For example, we

may care about the values of topic variables in a model but not the values of the parameters

used to generated the topic values (in fact, we can usually recover such parameters using the

topic variables themselves). Consequently, it is common to employ a collapsed Gibbs sampler

(i.e., Rao-Blackwellized version of the Gibbs sampler). This sampler involves integrating out

7
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the unneeded variables, leaving only the topic variables to be sampled. It has been shown that

the collapsed Gibbs sampler produces samples in the correct proportions to the marginalized

posterior distribution [15].

Unfortunately, Gibbs sampling does not directly accomplish our goal of finding a

maximum a posteriori estimate. The samples taken can serve to characterize an entire

distribution, but the probability of any particular sample being a maxima in the posterior is

extremely small. However, samples from the Markov chain generated by a Gibbs sampler will

randomly tend towards regions of high probability. Consequently, it is often the case that

selecting an arbitrary sample is a good approximation for a local maximum. Furthermore,

because the random walk of the sampler is able to explore better than a maximizing technique,

it can often find better solutions than EM or variational inference [34, 40], even if runtime

constraints prevent the sampler from exploring more than a handful of modes in the posterior

distribution.

For the purposes of interactive applications involving probabilistic models of text,

Gibbs sampling has one major drawback in that it lacks clear convergence criteria. Diagnostics

do exist for continuous models which can detect when the Gibbs sampler has explored a

sufficient region of the distribution, but these methods require that the sampler be run much

longer than is needed in order to ensure that the sampler has converged in distribution [32].

For our purposes, we desire an algorithm which can be convergent in order to reduce the

runtime of inference.

1.3 Thesis Statement

An algorithm which iteratively maximizes complete conditionals, namely Iterated Condi-

tional Modes, is able to obtain locally optimal maximum a posteriori estimates for various

probabilistic models of text quickly enough to allow for human interaction during inference

without the need for approximating the entire posterior distribution.

8
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Input : observed data w
Output : va lue s f o r unobserved v a r i a b l e s θ

randomly i n i t i a l i z e θ
whi le θ not converged :

f o r θk in θ :
θk = argmaxj p(θk = j|θ¬k, w)

Figure 1.1: Iterated Conditional Modes Algorithm

1.4 Iterated Conditional Modes

In this section we will outline the Iterated Conditional Modes (icm) algorithm. We will be

brief here, as further details are given in chapter 2. Suppose we are given a probabilistic

model of text with observed data w and unobserved variables θ. For the purpose of this

discussion, θ may be any number of unobserved parameters and/or latent topic variables.

These parameters and topic variables can be either continuous or discrete. Like Gibbs

sampling, icm relies on the fact that while computing a posterior distribution of the form

p(θ|w) may be intractable, computing the complete conditional for a single variable θi while

holding both w and the rest the parameters θ¬i may be feasible. By using the tractable

complete conditional p(θi|θ¬i, w) we should be able to maximize the posterior without the

need to approximate.

The general procedure for icm is similar to Gibbs sampling. As will be seen in

listing 1.1, we cycle through each unobserved variable θi in the model and update each

variable using the complete conditional for that variable. More precisely, we update the value

of θi so that

θi = argmax
k

p(θi = k|θ¬i, w) (1.1)

As seen in Section 2.2, we can show that this update equation monotonically increases the

value of the posterior. Since the posterior is bounded above by 1, we can appeal to the

monotone convergence theorem to assert that icm must converge to a local maximum in the

posterior.
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1.5 Applications

In this section we will introduce some of the specific models which we will use in our

experiments to validate the use of icm in later chapters. These models represent a variety of

probabilistic models applied to different interactive use cases.

1.5.1 Mixture of Multinomials

Figure 1.2 gives the conditional distributions and plate diagram for the Mixture of Multino-

mials model. The observed data for the model is w, where wd represents the dth document

as a vector of word counts. The number of documents is M . The latent cluster or topic

variable is k, where kd is the cluster assignment or topic of the dth document. The number of

topics is K. In the model’s generative story, the topic assignment is drawn from a categorical

distribution with parameter λ, while the words are drawn from a multinomial distribution

with parameter φkd . The modeler gives input about what λ and φ should look like in the

form of the Dirichlet priors α and β. Further information about the model is given by Walker

and Ringger [40].

λ|α ∼ Dirichlet(α), |λ| = K

∀k ∈ {1, ..., K} : φk|β ∼ Dirichlet(β), |φk| = V

∀d ∈ {1, ...,M} : kd|λ ∼ Categorical(λ)

∀d ∈ {1, ...,M} : wd|kd, φ ∼Multinomial(Nd, φkd)

α

λ

kd

wd

M

φk

K

β

Figure 1.2: The Mixture of Multinomials model, along with the graphical representation of
the model
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Since the model assigns exactly one mixture component to each document, it is useful

not only to gain a high level understanding of the topical content of a collection of documents

but also as a method for performing both hard and soft document clustering. Model-based

document clustering has become increasingly popular due to higher quality results and better

scalability compared to traditional similarity-based approaches [42]. Potential applications

include automatic organization of textual data, genre and novelty detection, exploratory

analysis and text mining [39]. In particular, we mention web search result clustering, in

which search engine results are clustered before being presented to users, either directly as

clusters, or by interspersing results from different clusters to enhance diversity of the results.

Web search result clustering therefore allows users to sort through different meanings of their

query and focus on only the relevant results [14]. The Mixture of Multinomials model is both

a simple and effective model for performing document clustering. However, in order for web

search result clustering to be useful, the inference algorithm must be able to run very quickly

and still produce a high quality model.

Previous work with the Mixture of Multinomials model indicates that a collapsed Gibbs

sampler which integrates out the parameters λ and φ performs better than the uncollapsed

Gibbs sampler [34]. This sampler also outperforms both Expectation Maximization and

variational inference in terms of model quality [34, 39, 40]. Due to these results, our

experiments with this model will focus on comparing icm performance with that of Gibbs

sampling.

In order to implement Iterated Conditional Modes for the Mixture of Multinomials

model, we need to derive the update equations. Walker and Ringger [40] already gave the

complete conditional for the collapsed Gibbs sampler; we can simply apply an argmax to the

complete conditional for each kd. Thus, our update equation is given by

kd = argmax
j

(αj + nj − 1)
Γ(
∑V

v βv + n·j· − nd··)
Γ(
∑V

v βv + n·j·)

V∏
v

Γ(βv + n·jv)

Γ(βv + n·jv − ndjv)
(1.2)
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where V is the number of terms in the corpus vocabulary, α and β are the parameters of

the Dirichlet priors we gave to the model, nj is the count of documents assigned to cluster j,

and ndjv is the count of terms of type v in document d, if document d is assigned to cluster

j, with dots indicating marginalization over the indicated dimension. In order to perform

inference, we need only iterate over each cluster assignment kd and update the current kd

using equation 1.2. We repeat this process until no further changes will be made to the

model.

∀k ∈ N : φk|β ∼ Dirichlet(β), |φk| = V

∀d ∈ {1, ...,M} : kd|α ∼ CRP (α)

∀d ∈ {1, ...,M} : wd|kd, φ ∼Multinomial(Nd, φkd)

α

kd

wd

M

φk
∞

β

Figure 1.3: The Dirichlet Process Mixture of Multinomials model, along with the graphical
representation of the model. Contrast this with figure 1.2.

One disadvantage of the Mixture of Multinomials model is that it requires the number

of clusters K to be specified a priori . When the number of clusters is known, this is not a

problem, but on new data, it can be difficult to determine the optimal number of clusters

without sweeping this number with multiple runs. A simple solution to this problem is to

extend the Mixture of Multinomials model to be a Dirichlet Process Mixture of Multinomials

(hereafter dp-mom). Essentially all we have to do is replace the Dirichlet prior over the topic

distribution with a non-parametric Dirichlet Process prior. As observed by Blackwell and

MacQueen [8], we can further simplify the model by integrating over the random mixing

measure in the DP mixture, so that the resulting model will have a Chinese Restaurant

Process prior over the mixing components. This non-parametric prior allows the model to

learn the number of clusters from data. We will discuss this extension in more detail in
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subsection 2.3.1, but the basic form of the dp-mom can be seen in figure 1.3. As part of

the thesis, we implement both the Mixture of Multinomials and the dp-mom models with a

Gibbs sampler and with icm.

While the both the Mixture of Multinomials and the dp-mom models have been

applied to document clustering in general, we will focus on a specific type of document

clustering known as web search result clustering. Web search result clustering systems take

the textual snippets returned from a search engine query and then use clustering on those

snippets in order to automatically organize the snippets into semantically related groups.

This can help the user quickly narrow the scope of an ambiguous search query.

Figure 1.4: Example screenshot from the Carrot2 search interface. The query ”tiger” was
issued to Wikipedia, and the results can be filtered by selecting a topic on the left.

One example of such a system is the Carrot2 search framework, shown in figure 1.6.

In the figure, the user has issued the query “tiger” to the web search result system. If the

user only intended to find results related to the large feline, they may be surprised to see

13
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other results related to the famous golfer, the professional sports team, or the German tank.

By selecting a more refined topic on the left, the user can quickly filter out irrelevant results.

Other systems will instead use web search result clustering to ensure that at least one result

from each topic is shown in the top results, thereby guaranteeing that the user will find a

relevant result, even if they do not explicitly select a more specific topic manually.

Web search result clustering systems do not typically maintain their own search data,

but instead rely on search results from an external search engine results chosen by the

user. This allows the web search result clustering to work with arbitrary search results,

but also introduces new constraints on runtime. Most importantly, the web search result

clustering must be able to perform document clustering quickly enough to facilitate web

search. For simple interactions like issuing a web search query, the interaction take less than

one second [16]. We aim to show that with the use of itm on dp-mom model, we can not only

achieve interactive runtime, but also improve the state of the art web search result clustering

systems. Our experiments with these models can be found in subsection 2.3.1.

1.5.2 Interactive Topic Model

The Interactive Topic Model [23] extends Latent Dirichlet Allocation so that word groups

may form constraints in the form of Dirichlet forests [1]. Figure 1.5 gives the conditional

distributions and plate diagram for the model. By placing words into a single Dirichlet forest,

we can encourage them to either group into the same topic or to stay in separate topics by

setting the parameter η, the prior over word constraints, to the appropriate value. For our

purposes, we restrict ourselves to constraints which group words, as separating constraints

are much harder to handle due to issues with transitivity [1].

This model is designed to give users the power to interactively drive the model learning.

First, the user is shown a summary of the topics. The user can then give feedback by selecting

words which should be grouped together within the same topic. Inference then resumes using

the new constraints. This process repeats iteratively until the user is satisfied with the model.

14
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∀t ∈ {1, ..., T} : φt|β, η ∼ DirichletForest(β, η), |φt| = V

∀d ∈ {1, ...,M} : θd|α ∼ Dirichlet(α), |θd| = T

∀d ∈ {1, ...,M}∀n ∈ {1, ..., N} : zdn|θd ∼ Categorical(θd)

∀d ∈ {1, ...,M}∀n ∈ {1, ..., N} : wdn|zdn, φ ∼ DirichletTree(φzdn)

α

θ

z

wφ

β

η

N
M

T

Figure 1.5: The Interactive Topic Model

By including the actual user of the topic model in the inference loop, we can produce

models which are tailored to the individual user’s needs. Even if we could produce a model

which perfectly captures the statistical trends present in the data, each user has different

purposes and intentions for the topics and the data. Allowing human guidance allows the

ITM to produce models which are of higher quality for the intended analysis of the data.

We note that the run time for this application is critical for delivering a good user

experience. Studies have shown that for many applications, if the user is forced to wait too

long, cognitive load increases, and users can become frustrated by the experience [16]. In

particular, responses such as clicking on links should take no more than a second, while more

complex user-initiated actions should take no more than on the order of ten seconds to be

completed. Consequently, in order to provide the best possible user experience with the

Interactive Topic Model, we require an inference algorithm which can take the user constraint

feedback and produce an updated model within seconds.

As with the Gibbs sampler for the ITM described by Hu et al [23], we implement a

collapsed version of Iterated Conditional Modes. We also simplify the model by assuming

that every token type belongs to a constraint, even if that constraint is of size one. This is
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Figure 1.6: The ITM user interface for Mechanical Turk experiments in Hu et al. [23]. The
user is presented with the top words of each topic, and is then allowed to introduce or remove
word-level constraints.

equivalent to Hu’s original formulation [23] which is conditioned on whether the token type is

part of a constraint or not. The two formulations are equivalent because the terms involving

word constraints are constant and do not affect the argmax. After this simplification, the

update equation for icm is:

zdn = argmax
j

(αj + ndj··)
Cldnβ + n·jldn·
V β + n·j··

η + n·jldnwdn

Cldnη + n·jldn·
(1.3)

where ndtlv is the count of terms of type v in constraint l assigned to topic t in document

d, the constraint of the nth word in the dth document is indicated by ldn, and Cldn is the

number of word types in constraint l excluding the nth token of the dth document. Dots

indicate marginalization over the missing index. The number of token types is V .
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In order to use icm, we need only apply this equation to each topic variable in

succession until no further updates are made to the model. We implement icm as well as

the Gibbs sampler described in the original itm paper. We will not implement variational

inference, as no variational update equations have been published for the model (likely

because hyper-parameter optimization is not possible in this model). Our experiments with

the itm model are presented in subsection 2.3.2 and chapter 3.

1.5.3 MomResp

The final model we will discuss in this thesis is the MomResp model, used for aggregating

labels and annotations from multiple sources. It is a an joint model over document features

and multiple, noisy annotations [20]. This model extends the item response model [12]

by incorporating the document data to help infer ground-truth labels from crowdsourced

annotations of the data. Figure 1.7 gives the conditional distributions and plate diagram

for the MomResp model. The observed data for the model is w, where wd represents the

dth document as a vector of word counts. The observed annotations are a, where adj is the

annotation for the dth document given by the jth annotation. The latent cluster assignment

for the dth document is kd. In the model’s generative story, the cluster assignments are

drawn from a categorical distribution with parameter λ, while the words are drawn from a

multinomial distribution with parameter φkd . Each annotation adj is drawn from a categorical

distribution with parameter γjkd . The modeler gives input about the parameters λ, φ, and γ

in the form of Dirichlet priors α, β, and η, respectively.

Both the Gibbs sampler and icm for the model have been implemented previously

by Felt et al. [20], although the results using icm with MomResp are as of yet unpublished.

We will further discuss the results of the performance of icm with MomResp compared to

Gibbs sampling in subsection 2.3.3.
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λ|α ∼ Dirichlet(α), |λ| = K

∀k ∈ {1, ..., K} : φk|β ∼ Dirichlet(β), |φk| = V

∀k ∈ {1, ..., K}∀j ∈ {1, ..., J} : γjk ∼ Dirichlet(η), |γjk = K|

∀d ∈ {1, ...,M} : kd|λ ∼ Categorical(λ)

∀d ∈ {1, ...,M} : wd|kd, φ ∼Multinomial(Nd, φkd)

∀d ∈ {1, ...,M}∀j ∈ {1, ..., J} : adj|kd, γ ∼ Categorical(γjkd)

α

λ

kd

wdφk

β

adj

J

γjk

K

η

K
M J

Figure 1.7: The MomResp model, along with the graphical representation of the model.

18



www.manaraa.com

Chapter 2

Iterated Conditional Modes

Submitted for publication in Proceedings of NAACL 2015

2.1 Introduction

One of the most popular and useful approaches for analysis of large bodies of text documents

is probabilistic models. For example, topic models such as Latent Dirichlet Allocation (lda)

can automatically learn topics from a set of documents, giving users a glimpse into the

common themes of the data [9]. Other models such as the Mixture of Multinomials can

be used to perform document clustering allowing users to automatically organize text data

[25, 40].

We are interested in use cases for probabilistic models of text which include human

interaction. For example, the Interactive Topic Model (itm) is a topic model that extends

lda to allow the user to inject model constraints in the form of word groupings while the

topics are being learned [23]. By including the user in the training process rather than

simply learning the topics offline, the user can fine-tune the resulting topic model to better

suit individual user needs and to accommodate a user’s domain knowledge. However, if the

training algorithm is too slow, the delay between receiving user feedback and presenting

the updated model will harm the interaction due to increased cognitive load. Consequently,

we require an inference algorithm which is both fast enough to facilitate interaction, and

maintains (or improves upon) the accuracy of existing inference techniques.
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For models like lda, we typically perform training by calculating maximum a posteriori

estimates of the latent topic variables and parameters given observed document data, with

the idea that the setting of topic variables and parameters which maximizes the posterior

distribution will best explain the observed data. Although various exact methods exist, such as

belief propagation [31] and the junction tree algorithm [24], the complexity of exact posterior

inference on such models is NP-hard in general, so we resort to various approximations in

order to optimize the posterior distribution [17, 36]. Some popular algorithms for approximate

posterior inference include Gibbs sampling and mean field variational inference.

Each of these approximate inference algorithms has some drawbacks. For example,

while variational inference is often very fast, it makes simplifying assumptions about the

posterior distribution which can seriously degrade the quality of solutions for certain models,

such as Mixture of Multinomials [39]. However, for other models such as lda we can achieve

good estimates very quickly [4]. Gibbs sampling provably generates samples from the posterior

distribution and unlike variational inference, it is theoretically able to explore the entire

support of the posterior manifold. Unfortunately, any reasonable restriction on the run time

of the sampler means that we will only be able to explore a localized area of the support.

Consequently, for most uses of probabilistic models of text, practitioners run a sampler for a

period of time in the hope of finding an area of high probability, and then use the final sample

as an approximation for the mode. While for some models, such as Mixture of Multinomials,

this technique gives very good results [34, 40, 42], the lack of a convergence criteria can make

the technique too slow for applications which require user interaction. For example, Griffiths

and Steyvers [22] found that lda requires hundreds of iterations of sampling before the

log-likelihood of the model stabilizes in distribution. In practice, many of the probabilistic

models of text we are interested in require similar numbers of sampling iterations.

As an alternative to techniques which introduce strong assumptions for posterior

inference (e.g., variational inference) or lack clear and timely convergence criteria (e.g., Gibbs
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sampling), we will examine the use of Iterated Conditional Modes or icm [6], This algorithm

is able to quickly achieve locally optimal maximum a posteriori estimates.

In section 2.2, we will briefly describe the icm algorithm and compare it with other

existing techniques. Then in section 2.3 we will empirically examine the performance of

icm in the context of three very different probabilistic models of text which can be used

interactively. We first show that icm performs well in the context of a non-parametric model

by experimenting with a Dirichlet Process Mixture of Multinomials applied to the problem of

web search result clustering. We then turn our attention to the Interactive Topic Model [23]

to show that icm improves performance over the previously published Gibbs sampler. Finally,

we use icm in the context of MomResp, a probabilistic model designed to infer true document

class labels from noisy crowdsourced judgments [20].

2.2 Iterated Conditional Modes

Suppose we are given a probabilistic model of text with observed data x and unobserved

variables θ. For the purpose of this discussion, θ may represent any number of unobserved

parameters and latent variables. These parameters and variables can be either continuous

or discrete. Like Gibbs sampling, Iterated Conditional Modes (icm) relies on the fact that

while computing a posterior distribution of the form p(θ|x) may be intractable, computing

the complete conditional for a single variable θi while holding fixed both x and the rest of the

parameters θ¬i is feasible in models with local conjugacy. By using the tractable complete

conditional distribution p(θi|θ¬i, x) we are able to locally maximize the posterior without the

need to approximate the posterior with samples.

The general procedure for icm is very similar to Gibbs sampling. We cycle through

each unobserved variable θi in the model and update current value of the variable to be the

mode of its complete condition distribution. The icm update is repeated until convergence

when the value of each θi is already the mode of its complete conditional distribution.
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To see that Iterated Conditional Modes will find a local maxima of the posterior

distribution, we will demonstrate that the icm updates monotonically increase the current

estimate of the posterior probability p(θ|x). Since the data x is fixed, the posterior is

proportional to the joint distribution over all of the variables and data:

p(θ|x) =
p(θ, x)

p(x)
∝ p(θ, x) (2.1)

Using the chain rule, for some i we can then factor the joint distribution as:

p(θ, x) = p(θi|θ¬i, x) · p(θ¬i|x) · p(x) (2.2)

Since x is fixed, we can also write

p(θ, x) ∝ p(θi|θ¬i, x) · p(θ¬i|x) (2.3)

While updating the parameter θi, θ¬i is held fixed, which means that the second term p(θ¬i|x)

is constant and the factored joint distribution is proportional to the complete conditional,

thus:

p(θ|x) ∝ p(θi|θ¬i, x) (2.4)

Since these two expressions are proportional, setting θi to the mode of its complete conditional

will only increase the value of the posterior probability. Thus our update rule for the variable

θi is given as:

θ̂i = argmax
k

p(θi = k|θ¬i, x) (2.5)

Since this update equation monotonically increases the estimate of the posterior probability,

and the value of the posterior probability is bounded above by 1, we can use the monotone

convergence theorem to conclude that this algorithm will converge to a local maximum in the
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posterior distribution. Furthermore, the icm algorithm is able to do so without approximating

the whole posterior distribution.

Iterated Conditional Modes is related to Expectation Conditional Maximization [26]

in that it employs conditionals to find local maxima in a distribution. However, unlike

Expectation Conditional Maximization which maximizes a likelihood, icm is not a variant of

EM, as it takes into account prior distributions when computing the complete conditionals.

In fact, we could describe icm as a particular limit of Gibbs sampling in the same way that

K-means can be viewed as the deterministic limit of the EM algorithm [7].

Note however that the efficiency of the icm algorithm depends entirely on the ability

to quickly compute the mode of the conditional distributions. If the complete conditional

distribution is a density, this may involve continuous optimization. However, for many

probabilistic models of text, computing the mode of the conditional distribution is often easy

due to the frequent use of the Dirichlet-Multinomial conjugate pair.

To be clear, Iterated Conditional Modes is a coordinate ascent algorithm, and as

such, it can only locally optimize the posterior — there is no guarantee of finding a global

maximum. Thus if the posterior manifold contains many sub-par local maxima, then icm

will be sensitive to initialization and may perform poorly. Random restarts may mitigate

the problem. Alternatively, an initialization strategy which consistently starts the inference

procedure near a good solution will yield better maximum a posteriori estimates. The best

initialization strategy depends on the model to be optimized. Thus each experiment described

below includes its own initialization strategy.

2.3 Experiments

We now demonstrate that Iterated Conditional Modes converges quickly enough to allow for

interactive use cases involving various probabilistic models of text, while yielding high quality

estimates. In the hopes of demonstrating the general applicability of the technique, we do so

on three different models and tasks. The first model is a DP Mixture of Multinomials applied
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to the task of web search result clustering. We choose this model to show that icm can work

in the context of non-parametric models. The second task is the Interactive Topic Model or

itm. We choose this model to suggest that icm may be viable for a wide variety of interactive

topic modeling applications. Finally, we will apply icm to the MomResp model, which is a

probabilistic model for producing annotated corpora for NLP and machine learning research.

2.3.1 Web Search Result Clustering

As many as 16% of queries issued to search engines contain ambiguous search terms [35].

After issuing a search query with this kind of ambiguity, users may become confused by

seemingly unrelated search results, or they may be slowed by the need to narrow the scope of

the query. For example, suppose a user issues the query “tiger.” The user may be surprised

to see results about the large feline, the golfer Tiger Woods and the German tanks used in the

1940s, when only one of those meanings of “tiger” was intended. Web search result clustering

helps users deal with query ambiguity by automatically discovering clusters among the search

results and presenting the results as clusters [14]. With a web search result clustering system,

the user can select the cluster in which they are actually interested, and immediately filter

out irrelevant results. An example of such a system is the Carrot2 search framework, which

is available online both as a web service and as a downloadable application.∗

Client-side web search result clustering systems do not maintain their own search index

or data but instead rely on search results (specifically the snippets) returned from an external

search engine chosen by the user. This allows users to utilize web search result clustering

systems on a wide variety of search engines, both public and private. Since web search result

clustering systems are meant to work with arbitrary search results, the computation typically

takes place client-side. An important consequence is that web search result clustering systems

should be able cluster extremely small amounts of data: rather than tens of thousands of full

documents encountered in typical document clustering tasks, a web search result clustering

∗http://search.carrot2.org
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systems uses around 100 documents, each of which consist of no more than a sentence or two.

Furthermore, web search result clustering systems must be run quickly enough to facilitate

web search. For simple interactions like issuing a web search query, the interaction take less

than one second [16]. This stands in contrast to typical document clustering settings which

can be run offline possibly using parallel computation resources rather than online using

a single commodity machine. Due to these run time constraints, it has been argued that

traditional document clustering techniques may not work out of the box [14]. Consequently,

various specialized algorithms for the problem of web search result clustering have been

published.

The best reported solution to the problem of web search result clustering employs

maximal spanning trees to perform word sense induction [19]. The algorithm, referred to

as mst, uses the Google Web1T n-gram data set [11] to create a co-occurrence graph on

the words in the snippet results and then calculates maximal spanning trees to remove

edges from the graph. This process repeats until the desired number of word clusters is

formed. Unfortunately, the requirement of large amounts of n-gram data is not amenable to

client-side computation. Even just maintaining an up-to-date n-gram data set (so that the

system can handle queries related to fast-changing subjects such as recent popular culture) is

also necessary but requires web-scale data-gathering resources. Consequently, mst is not a

client-side solution.

There are, however, a number of approaches which are amenable to client-side web

search result clustering. One such system is Lingo, which was developed for use in the Carrot2

search framework [30]. Another is KeySRC, which extracts key phrases from snippet data

and then uses hierarchical agglomerative clustering on those phrases [5].

Despite the fact that model-based approaches tend to yield higher quality results in

the general problem of document clustering [42], no study has applied model-based clustering

to the specialized problem of web search result clustering. We rectify the lacuna by applying

Iterated Conditional Modes to a Dirichlet Process Mixture of Multinomials model (hereafter
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referred to as dp-mom), and we compare our results to those of the previously studied web

search result clustering solutions.

Our model-based approach employs a Dirichlet Process (DP) mixture model, a well

studied Bayesian non-parametric model [3, 29]. This type of model has been used to perform

document clustering, albeit with modifications to include feature selection in the model [41].

Given the scarcity of data in this application, we cannot realistically perform feature selection

(although the snippet generation itself might be viewed as feature selection).

While DP mixtures in general are well known, the details for the specific instance of a

DP mixture model that we employ (namely dp-mom) have not been published elsewhere,

so we will elaborate here. DP mixture models have a known relationship with the Chinese

Restaurant Process (CRP) in that if we integrate over the random mixing measure in the DP

mixture, the resulting model will have a CRP prior over the mixture components [8]. Taking

advantage of this relationship, the dp-mom model can be written with the following form:

φk|β ∼ Dirichlet(β), k = 1, ..., K

zd|α ∼ CRP (α), d = 1, ...,M

wd|zd, φ ∼Multinomial(Nd, φzd), d = 1, ...,M

where φk is the word distribution for topic k with a symmetric Dirichlet prior of β, zd is the

cluster assignment of document d, α is CRP concentration, and wd gives the observed token

counts for document d. M is the number of documents, and Nd is the number of tokens in

the dth document.

Following the advice of Neal [29], we derive a collapsed Gibbs sampler by integrating

over φ. The complete conditional probability for the cluster assignment zd, given the other
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assignments z¬d and data is

p(zd = j|z¬d, w) ∝


cj

∏
v∈V

Γ(β+njv+wdv)

Γ(|V |β+nj·+wd·)
Γ(|V |β+nj·)

Γ(β+njv)
, if cj > 0

α
∏
v∈V

Γ(β+wdv)
Γ(|V |β+wd·)

Γ(|V |β)
Γ(β)

, otherwise
(2.6)

where V is the set of words in the data, cj is the count of documents assigned to cluster j,

njv is the number of times the word type v is present in a document assigned to cluster j,

and wdv is the number of times word v is found in document d. Dots in the subscripts of

these counters indicate marginalization over the missing index. For the sake of space, we

omit the derivation, but it is similar to the derivation for the finite Mixture of Multinomials

given by Walker and Ringger [40].

The final detail needed for implementing dp-mom is an initialization strategy. A key

advantage of using a non-parametric model is that the model can learn the number of clusters

from data, thereby allowing our model to perform well with varying amounts of query term

ambiguity. We can either initialize with a large number of clusters and let the model shrink

to fit the data or to start with a small number of clusters and grow to fit the data. Our

experiments indicate that starting with a single cluster performed the best, so we utilized

this initialization strategy for our results.

In order to validate that our model-based approach performs well, we follow the

same methodology as Di Marco and Navigli [19] when evaluating the mst algorithm. We

experiment with two different datasets: AMBIENT [13] and MORESQUE [19]. Each dataset

is a set of search queries issued to the Yahoo! search engine, along with the top 100 search

result snippets which have all been manually labeled with topics. The primary difference

between the two datasets is that the earlier AMBIENT dataset consists of single word queries,

while the MORESQUE dataset extends AMBIENT to queries of length 2–4. Taking both

datasets together, we have a total of 158 ambiguous queries, each with between 3 and 15

topics.
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Algorithm AMBIENT MORESQUE All

icm dp-mom .768 .570 .625

Gibbs dp-mom .758 .544 .604

KeySRC .665 .558 .588

Lingo .628 .527 .555

mst .815 .867 .852

Table 2.1: Clustering quality results, as measured by the Rand index. We include the mst
results for reference though they do not constitute client-side results. Bold indicates the best
client-side result, and underline indicates the absolute best result.

Following Di Marco and Navigli [19], we evaluate clustering performance on these

ambiguous query datasets with two metrics. The first is the Rand Index [33], a measure

of similarity between two clusterings over the same set of elements. The Rand Index can

be viewed a kind of accuracy, since it gives the percentage of pairing decisions which were

correctly made with respect to a base clustering.

Table 2.1 summarizes the results of the various web search clustering algorithms

measured by Rand Index. We see that the mst algorithm performs the best, but we remind

the reader that this algorithm far exceeds the computation resource requirements for client-

side web search result clustering so it only serves as a baseline. Among previously studied

algorithms which respect resource constraints, our model-based approach outperforms existing

techniques by a wide margin. Interestingly, Iterated Conditional Modes outperforms Gibbs

sampling, indicating that for this model and this task, the extra exploration within a region

of high probability from sampling is not as important as the ability to jump to a mode in

that region of high probability. Furthermore, our approach is extremely fast. Using a single

core of an AMD Phenom II X6 1090T processor, the median time spent using icm to perform

clustering on results for a single query was 1.18 milliseconds.

Our second measure evaluates the diversification produced by a clustering algorithm.

As outlined by Di Marco and Navigli [19], we can use the clustering labels to re-rank the

search results such that the top search results are more diverse. We measure the diversification
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Algorithm K=3 K=5 K=10 K=15 K=20

icm dp-mom .517 .650 .811 .885 .927

Gibbs dp-mom .508 .635 .795 .873 .917

Yahoo! .492 .600 .729 .785 .827

KeySRC .443 .558 .720 .791 .832

mst .547 .656 .792 .867 .907

Table 2.2: Diversification results on all queries, as measured by S-recall@K. Bold indicate the
best client-side result, and underline indicates the best absolute result.

with S-recall@K, which measures the percentage of ground-truth labeled topics present in

the top K search results after re-ranking.

Table 2.2 summarizes the results of the various web search result clustering algorithms

with respect to S-recall@K. Once again icm outperforms Gibbs sampling. In both cases,

our model-based approach outperforms the baseline ranking taken directly from the Yahoo!

search results. Both KeySRC and Lingo actually did worse than the Yahoo! baseline. For

K ≤ 5, mst performs the best. However, for all other values of K, our model-based approach

performs the best. This is likely due to the fact that our non-parametric model is able to

increase the number of clusters in the presence of highly ambiguous queries, whereas the mst

algorithm uses a pre-specified number of clusters.

2.3.2 Interactive Topic Model

We now turn our attention to the Interactive Topic Model or itm [23]. This model extends

lda by replacing the per-topic categorical distributions over words with a tree-structured

Dirichlet-forest distribution. The user interactively injects constraints into the model by

placing token types into Dirichlet trees. Depending on the prior for the Dirichlet trees, the

constraint can either be a “must link” (positive correlation) or a “cannot link” (negative

correlation) type of constraint [2]. Due to issues with transitivity in “cannot link” constraints,

we follow Hu et al. [23] and focus on “must link” constraints by setting the Dirichlet trees

parameter to be extremely high. A user is able to employ constraints to tell the model to

give a particular set of word types similar probability within each individual topic. For the
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sake of brevity, we omit details about the itm including the specific distributions for the

model and the complete conditionals used to drive the collapsed Gibbs sampler for the model

since they are thoroughly explained by Hu et al. [23].

Following Hu et al. [23], the itm model is trained as follows: first we train a base

model with no constraints. This is equivalent to learning a vanilla lda model. The user is

then presented with the outcome of an analysis using the model, possibly by showing them

the traditional topic lists wherein a topic is represented by the most probable words in the

topic. The user then injects word constraints into the model according to the individual

needs of the user or specific domain knowledge. Using the document-level ablation strategy

recommended by Hu et al. [23] the topic assignments of any document which contains a

newly constrained word are revoked. In order to enforce model consistency, the rest of the

topic assignments remain unchanged. Finally, inference is rerun with the new constraints

and the updated model is presented to the user. This interactive process is repeated until

the user is satisfied with the final state of the model.

We now investigate which inference algorithm performs the interactive model updates

best. As demonstrated by Hu et al. [23], Gibbs sampling is certainly an option. Cook and

Thomas [16] show that for a complex user-initiated activity such as requesting a model update,

we desire a response time which is ten seconds or less or else the human-computer interaction

may suffer. Unfortunately, if we perform the recommended 30 iterations of sampling, even at

one second per iteration, this can be taxing on the user. Thus we turn to icm as a faster

alternative.

In order to validate the performance of Iterated Conditional Modes on the itm, we

employ an experimental setup similar to that of Hu et al. [23] using the well-known 20

Newsgroups corpus, which consists of roughly 20,000 documents divided into 20 newsgroups.

We simulate a user’s constraints by selecting words using information gain with respect to the

newsgroup labels. After training a base model with 100 iterations of Gibbs sampling for burn-

in, we inject the simulated constraints into the model. Finally, we run inference using either
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Figure 2.1: Accuracy versus time for both Iterated Conditional Modes and Gibbs sampling
with the itm. The X-mark indicates the median point of convergence for icm.

icm or Gibbs sampling from this point. We evaluate the model quality with a classification

task. To do so, the corpus is split into a training and test set, and each word along with its

assigned topic is used as a feature for the classifier. We report the classification accuracy

from a support vector machine trained on the topic-word pairs from the documents in the

training set. As with Hu et al. [23], we do not hope to achieve state-of-the-art classification

results for this dataset, but we do hope that the classification trends will demonstrate which

inference algorithm better drives the model towards the original (withheld) human labels

once the simulated constraints have been added.

As shown in Figure 2.1 Iterated Conditional Modes outperforms Gibbs sampling.

This indicates that there is more value in reaching a local maximum than there is in the

exploration that comes from sampling. More importantly, icm has the potential to run much

faster than Gibbs sampling: rather than running a Gibbs sampler for the recommended 30

iterations, the median number of iterations required for icm to converge was 9, which allows

us to present the updated model to the user within the ten second time frame recommended

by Cook and Thomas [16].
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2.3.3 MomResp

Microtask markets such as Amazon’s Mechanical Turk (mturk.com) allow corpora to be

labeled at extremely low cost, a practice known as crowdsourcing. However, the recent

emergence of crowdsourcing as the preferred method for labeling document corpora has

introduced an important research problem: how to mitigate the inaccuracy of crowdsourced

judgments. A common solution is to obtain multiple redundant judgments, or annotations,

and aggregate them using a baseline strategy such as majority vote.

When annotations are both plentiful and highly accurate, majority vote works well.

However, crowdsourced annotations are seldom highly accurate. State-of-the-art solutions

are model-based and use standard inference algorithms. For example, the MomResp model

presented by Felt et al. [20] describes a joint model over document features and annotations.

We include here a sketch of the model, deferring details to the referenced paper. Documents

and annotations are both modeled as count vectors with multinomial distributions conditioned

on the true but unobserved class label. Parameters include both per-class word distributions

and class confusion matrices for each annotator. When annotations are scarce or of low-quality,

the MomResp model trained with Gibbs sampling significantly outperforms majority vote

in terms of inferred label accuracy. Labels inferred by Iterated Conditional Modes are even

more accurate.

In order to validate this claim, we run MomResp with both Gibbs and icm on

synthetic annotations produced for the 20 newsgroups dataset. We draw synthetic annotators

from the LOW and CONFLICT annotator pools described by Felt et al. [20]. Each pool

consists of 5 annotators. In both pools, annotators give correct judgments with probabilities

.5, .4, .3, .2, .1, respectively. In the LOW pool, annotator errors are distributed uniformly

across incorrect classes. In the simulated CONFLICT pool, errors are systematic: a confusion

matrix is created for each annotator whose diagonal is set to the annotator’s accuracy and

whose off-diagonal row entries are sampled from a symmetric Dirichlet distribution with

parameter 0.1, to encourage sparsity, and then scaled so that each row sums to 1. CONFLICT
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Figure 2.2: Accuracy of inferred labels versus the number of annotations given to the model.
At the last plotted point each document has on average nearly 4 annotations. Gibbs and icm
use MomResp. A majority vote baseline is also shown for reference.

errors are produced by corrupting true labels according to this confusion matrix. Documents

are annotated in random order without replacement, and after all documents have one

annotation, the process is repeated. Simulated annotation continues until we have reached

the desired number of annotations. We then initialize MomResp using majority vote to

set initial class label values and perform posterior inference using both Gibbs and icm. We

compare the model-inferred class labels with the gold standard class labels for each document

in order to compute model accuracy.

Figure 2.2 plots the inferred label accuracy of Gibbs and icm as well as majority vote

for reference. Regardless of the number of annotations, icm yields better accuracy than

Gibbs sampling for both the LOW and the CONFLICT cases. While not shown, this trend

hold even cases where majority vote outperforms MomResp.

In addition to inferring more accurate document labels than Gibbs, icm has a run

time which is orders of magnitude faster than that of Gibbs sampling. The median time of

convergence was 6.72 seconds. This falls well within the run time recommended by Cook

and Thomas [16] for complex user-initiated tasks such as rerunning inference on MomResp

given additional annotations. Consequently, if MomResp were to be adapted for an active

learning task, then icm would provide not only accurate posterior inference, but run times

which are amenable to active learning.
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2.4 Conclusion

Iterated Conditional Modes is a coordinate ascent algorithm that yields locally optimal

maximum a posteriori estimates for models with tractable complete conditionals. We have

shown that icm identifies maximum a posteriori solutions that are superior to those found

by Gibbs sampling for three applications: web search result clustering, topic modeling,

and crowdsourcing problems. In addition, Iterated Conditional Modes has a termination

criterion which is easily identified while it is often difficult to determine when a Gibbs

sampler has reached the stationary distribution. Because of the convergence of icm, we were

able to significantly speed up the three applications compared to Gibbs sampling, enabling

better human interactivity. These experiments motivate further exploration of this inference

technique, particularly in interactive use cases of probabilistic models in which both run time

and model quality are crucial.
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Chapter 3

Hybrid Maximization/Sampling for the Interactive Topic Model

In subsection 2.3.2, we explored the use of Iterated Conditional Modes with the itm

model and found that icm can significantly improve upon Gibbs sampling both in terms of

runtimes and classification accuracy. One way to reason about the difference in performance

in these two algorithms is by framing the inference problem in terms of the tradeoff between

exploitation and exploration. With icm, we are able to exploit the current state of the

inference by using hill-climbing to quickly find a local maximum. On the other hand, Gibbs

sampling is theoretically able to explore a signicant portion of the posterior manifold through

the sampling process. Therefore, given enough time and assuming that the maximal sampled

state is tracked, Gibbs sampling will eventually be able to achieve globally optimal maximum

a posteriori estimates. However, given the limitations on time in the context of interactive

use of the itm model, we find that immediate exploitation is more important.

In this chapter, we will expand upon our previous results in order to better understand

the tradeoff between exploration and exploitation during itm inference. To this end, we will

introduce a number of hybrid algorithms which allow us to control the amount of sampling

and maximization which occurs during the posterior inference process. We will then utilize

an experimental setup similar to 2.3.2 and compare the results of these hybrid algorithms to

that of icm and Gibbs sampling.
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3.1 Hybrid Experiments

The hybrid algorithms we will experiment with are coinflip, TopN, and threshold. Each

of these algorithms includes a parameter which allows us to control the degree of exploration

and exploitation. As in 2.3.2, we are most interested in characterizing algorithms when the

runtime is constrained to enable human interaction. For a complex user-initiated action such

as updating the itm after injecting a topic-word constraint, we require a response time on

the order of ten seconds [16].

3.1.1 Coinflip

The first hybrid algorithm we will experiment with is coinflip. Like icm and Gibbs sampling,

we iterate through each latent topic variable in the model, and we update the value of that

variable. With some probability p, we will update the value of the variable by maximizing

the complete conditional for that variable. Otherwise, we update the variable by sampling

from the complete conditional. By setting the value of p appropriately, we can control the

degree of exploration or exploitation. Note that p = 0 is equivalent to Gibbs sampling, and

p = 1 is equivalent to icm.

We run our experimental setup (described in 2.3.2) for each value of p in [0, .25, .5, .75, 1].

The results of these experiments are summarized in figure 3.1. Within the runtime needed

for interactivity, the general trend is that as we increase the amount of exploitation (through

maximization), classification accuracy also increases. However, if we allow for increased

runtimes, we see that that a hybrid approach eventually yields accuracy superior to that of

icm. In particular, after 40 seconds, we see that coinflip with p = .75 actually surpasses icm.

Unfortunately, the increased runtime required for coinflip to produce superior solutions is

not amenable to interactive use cases.
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Figure 3.1: Accuracy versus time for the coinflip algorithm, with various values for p. Note
that for p = 0, coinflip is equivalent to Gibbs sampling, and that for p = 1 coinflip is
equivalent to icm. In particular, with enough time, p=0.75 yields the best accuracy.

3.1.2 Top N

The next hybrid inference algorithm for itm we will use is TopN. Once again we iterate

through each latent topic variable in the model and perform an update using a sample from

the complete conditional for a particular topic assignment. However, we reject any assignment

which is not in the top n assignments when ranked by mass. By setting the value of n

appropriately, we can control the amount of exploration during inference. If n is low, we

discourage exploration by discarding topic assignments which have low probability. Note that

if n = 1, then TopN is equivalent to icm. Alternately, if n is equal to the number of topics

in our itm model, then TopN will be equivalent to Gibbs sampling.

The results of our experiments with itm using TopN for inference can be seen in

Figure 3.2. For values of 2 < n < 20, the TopN algorithm performs worse than Gibbs

sampling. This poor performance can be explained by the fact that when the TopN algorithm

performs exploration by sampling from the top n possible topic assignments, it can reinforce

the same incorrect assignment by making this assignment multiple times. For example,

consider the case where n = 3, and for each token in a particular document, the conditional
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Figure 3.2: Accuracy versus time for the TopN algorithm, with various values for n. Note
that for n = 1, TopN is equivalent to icm, and that for n = 20, TopN is equivalent to Gibbs
sampling.

distribution over topics has the same rank order. Since the topic ranking is the same across

this entire document (and possibly others), each time exploration is performed, the same

suboptimal topic assignment will be chosen. The next time the documents with this particular

topic ranking are updated, the potentially harmful topic assignment will be even more likely.

Contrast this behavior with that of coinflip, which when exploring allows any possible

topic assignment (even if some are far less likely than others).

3.1.3 Threshold

The final hybrid method we will employ is threshold. This algorithm is similar to Gibbs

sampling, except that the sampler will reject any assignment for which the conditional

probability of that assignment is less than a threshold t. If no such assignment exists, then

we simply select the assignment which maximizes the conditional probability. We can use

the value of t to control the amount of exploration or exploitation in the algorithm. If t is

low, then we allow more exploration as less likely topic assignments are considered. If t is

high, then we encourage exploitation as only topic assignments with high probability are

considered. Note that if t ≥ .5, then threshold is equivalent to icm, since there can only
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ever be a single assignment which has more probability than the threshold. Similarly, if t = 0,

then threshold is equivalent to Gibbs sampling, since no assignment will ever be rejected.
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Figure 3.3: Accuracy versus time for the threshold algorithm, with various values for t.
Note that for t = .5, threshold is equivalent to icm, and that for t = 0, threshold is
equivalent to Gibbs sampling. We have also marked the median point of convergence for icm
with an X-mark.

The results for threshold can be seen in figure 3.3. For t = .3 and t = .4, threshold

outperforms icm in terms of accuracy even if we cut off the threshold algorithm at the

median time for icm convergence. For t = .2 and t = .1, threshold eventually achieves

better accuracy than icm, but at the cost of increased runtime.

3.2 Threshold as Initialization

Using the threshold algorithm, which does indeed discourage low probability topic assign-

ments, we have achieved superior classification accuracy within the runtime constraints of

interactive use cases for itm above the performance of icm alone. However, note that the use

of the threshold algorithm loses the benefit of a clear stopping criteria due to the sampling

in the algorithm.

One simple way to alleviate this problem is to use a sampling algorithm to explore for

a number of iterations, and then run icm to ensure that we converge to a local maximum. In
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this way, we use the exploration in the sampling algorithm to initialize the state for the icm

hill climbing. When this approach is applied to the itm, the main concern will be whether

this approach will still allow us to keep the runtime small enough for interactive use.
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Figure 3.4: Accuracy versus time when using Gibbs sampling as an initializer for icm. The
value n indicates the number of iterations of sampling before we switch inference to use icm.
Note that n = 0 is simply icm.

We can of course simply utilize Gibbs sampling in order to provide our initial explo-

ration of the posterior. To do so, we repeat our previous experimental set up with the itm.

When the time comes to do an interactive update, we run a Gibbs sampler for n iterations,

and then finish by running icm. We experiment with values of n ∈ [0, 2, ..., 8]. The results of

these experiments can be seen in figure 3.4.

Most importantly, we see that n = 0 (which is equivalent to just using icm) outperforms

any other choice of n. This is because immediately after each new constraint, we revoke certain

topic assignments of words and documents which relate to the newly formed constraints

(see Hu et al. [23] for more details). In other words, immediately after adding a new

constraint, the most important words (namely the newly constrained words) have no topic

assignments or document level topic information. Consequently, the Gibbs sampler initially

makes assignments for those words which are too close to uniform random. On the other

hand, icm will very quickly choose a favorite topic for the new word and assign nearly all the
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newly constrained words to the chosen topic. Given that the user constrained these words in

such a way to try and pool them into a single topic, the maximization behavior of icm is

likely to yield the correct action.

An alternative to Gibbs sampling for icm initialization is one of our hybrid maximization-

sampling algorithms. We need some amount of maximization to avoid the problems we

observed with Gibbs sampling, but some amount of exploration can potentially allow us to

exploit a better neighborhood when it comes time to choose a local maximum. To explore

this possibility, we turn to threshold with t = .3 since it performed the best of our hybrid

algorithms. We repeat the same procedure we previously used with Gibbs sampling, in which

threshold is used for n iterations as an initializer for icm.
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Figure 3.5: Accuracy versus time when using threshold with t = .3 as an initializer for
icm. The value n indicates the number of iterations of sampling before we switch inference
to use icm. Note that n = 0 is simply icm.

The results of this experiment are summarized in figure 3.5. Both n = 6 and n = 8

demonstrate a slight improvement over simple icm, indicating that there may be value

in initializing with some limited amount of exploration. Furthermore, within the runtime

requirements for human interactivity, icm is still the best option.
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3.3 Discussion

We have experimented with various hybrid maximization/sampling algorithms in an effort to

understand the trade-off between exploitation and exploration when searching for a maximum

a posteriori estimate in the itm model. We have found that some care is needed when choosing

how to hybridize sampling and maximization. For example, the poor performance of TopN

indicates that the exploration must be allowed to make varied choices in topic assignment or

else the lack of exploration can become harmful. However, using the threshold algorithm,

we were able to improve upon the performance of either Gibbs sampling or icm alone.

Unfortunately, these gains come at a cost of increased runtimes. Thus, for the purpose of

interactive uses of the itm, we still recommend the use of pure icm.
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Chapter 4

Conclusion

While icm has been seen in the literature before for certain undirected graphical

models [6], it has not seen exposure in the literature for probabilistic models of text. Instead

the topic modelinprobabilistic literature has concentrated on the use of mean field variational

inference for fast inference [4]. However, for models in which there are no published or readily

derivable variational updates or in cases when mean field variational inference is known to

perform poorly, we submit that icm is a viable alternative to Gibbs sampling. We have shown

that icm is able to quickly obtain locally optimal maximum a posteriori estimates. We have

done so on a wide variety of probabilistic models of text for various interactive use cases.

For the itm, we improved the quality of the model after performing interactive updates

while reducing the runtime of the update. With Gibbs sampling, using the recommended 30

iterations of samplings for an update, our implementation of the itm takes a median time of

43 seconds. In contrast, the median time of convergence for icm was 11 seconds. With both

the improved model quality and drastically improved update times, we are better able to use

the itm for the intended use cases with interactive updates.

For the problem of web search result clustering, we demonstrated that icm can work

with the non-parametric dp-mom model. Using this model-based approach, we achieved

state-of-the-art client-side clustering performance. Using icm, clustering the search results

takes milliseconds, meaning that even on the lowest-grade commodity machine, our approach

could be used to create a client-side web search result clustering implementation.
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Finally, we demonstrated that icm works with MomResp, a model for aggregating

document labels using crowdsourced annotations. Compared to Gibbs sampling, icm not

only provides more accurate document labels, but also has a run time which is orders of

magnitude faster.

The success of icm on these three models validates our claim that icm as an inference

algorithm is both accurate enough and fast enough to enable human interaction on a wide

variety of probabilistic models. Our results suggest that any time a Gibbs sampler is employed

to achieve an approximate maximum a posteriori estimate, then icm is likely to be a fast

and accurate alternative.

44



www.manaraa.com

Appendix A

Finite Mixture of Multinomials for Word Search Result Clustering

In subsection 2.3.1, we showed that our approach to word search result clustering

utilizing the dp-mom model outperforms existing techniques which are amenable to client-side

use cases. We also demostrated that we outperforms mst with respect to diversification. We

claimed that the reason for this is that dp-mom is able to learn the number of clusters for

a particular query, whereas mst specified the number of clusters a priori . Consequently,

dp-mom is able to better handle various levels of query ambiguity and therefore performs

better on the diversification task.

In this appendix, we will present additional results which reenforce the claim that

dp-mom achieves superior diversification due to the ability to learn the correct number of

underlying clusters in the query data. We will do so by comparing the results of dp-mom

with a the finite version of the same model (namely Mixture of Multinomials).

A.1 Tuning Mixture of Multinomials

Before we can proceed with our comparison of Mixture of Multinomials with dp-mom, we

must first tune the model so that it can perform well on the task at hand. We must first select

the number of clusters we will use. Since this must be done a priori , we tuned this parameter

using a separate development data set. The best value on this data set was 5, which matches

the optimal number of clusters used by the mst algorithm on the same data [19].

Another decision we must make is the values for the hyperparameters α and β. We

now repeat the experiments previously described in subsection 2.3.1 using the Mixture of
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Algorithm AMBIENT MORESQUE All

icm dp-mom .768 .570 .625

Gibbs dp-mom .758 .544 .604

icm MOM .742 .527 .585

Gibbs MOM .739 .525 .585

Table A.1: Clustering quality results, as measured by the Rand index. We include the mst
results for reference though they do not constitute client-side results. Bold indicates the best
result.

Multinomials model in place of dp-mom. As before, we sweep the parameters α and β

and average the results across all parameterizations. We do this in order to demonstrate

robustness with any reasonable values for the hyper-parameters. We select values for α and

β in [.1, .2, ..., 1].

Finally, we must choose a strategy for initialization. With dp-mom, we found that

initializing with a single cluster and allowing the model to grow to the correct number of

clusters was best. However we cannot use this approach with the finite mixture, as the zero

counts in the initially empty clusters will prevent those clusters from ever being used. Instead,

we must initialize the document cluster assignments randomly.

A.2 Results

We now compare the performance of the finite Mixture of Multinomials with dp-mom on

the task of web search result clustering. We will utilize the same experimental setup as in

subsection 2.3.1. We start by examining the clustering quality. The results are summarized

in Table A.1. As was the case with dp-mom, with the finite mixture we achieve better

clustering quality with icm than with Gibbs sampling. However, it is also the case that

dp-mom significantly outperforms the finite Mixture of Multinomials.

As before, we also measured the performance of Mixture of Multinomials in terms of

diversification. Once again icm yields superior performance compared to Gibbs sampling on

the finite mixture, although the infinite mixture yields better results still.
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Algorithm K=3 K=5 K=10 K=15 K=20

icm dp-mom .517 .650 .811 .885 .927

Gibbs dp-mom .508 .635 .795 .873 .917

icm MOM .503 .640 .771 .840 .884

Gibbs MOM .502 .637 .769 .840 .885

Table A.2: Diversification results on all queries, as measured by S-recall@K. Bold indicate
the best client-side result.

A.3 Discussion

Given the structural similarity between dp-mom and Mixture of Multinomials (essentially

the only difference is the prior distribution over document cluster assignments), we assert

that the reason for the superior performance of dp-mom is due to the prior distribution over

cluster assignments allowing the model to learn the number of clusters from data.

We quantify the ability of dp-mom to learn the number of clusters by measuring the

mean absolute error in the discovered number of clusters with the true number of clusters.

For dp-mom with icm, this value is 2.32. Considering that there are anywhere between 3

and 15 topics for a given query, this is a fairly reasonable amount of error given that we

initialize with a single cluster. On the other hand, with the number of topics fixed at 5 as

was the case with the finite mixture, the mean absolute error in the number of topics is 3.14.

While this value is also fairly reasonable, the difference between the two explains the superior

performance of dp-mom, particularly when it comes to diversification at higher values of

k.
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